MHC-based fiber type and E-C coupling characteristics in mechanically skinned muscle fibers of the rat.
نویسندگان
چکیده
In this study, we investigated whether the previously established differences between fast- and slow-twitch single skeletal muscle fibers of the rat, in terms of myosin heavy chain (MHC) isoform composition and contractile function, are also detectable in excitation-contraction (E-C) coupling. We compared the contractile responsiveness of electrophoretically typed, mechanically skinned single fibers from the soleus (Sol), the extensor digitorum longus (EDL), and the white region of the sternomastoid (SM) muscle to t-system depolarization-induced activation. The quantitative parameters assessed were the amplitude of the maximum depolarization-induced force response (DIFR(max); normalized to the maximum Ca(2+)-activated force in that fiber) and the number of responses elicited until the force declined by 75% of DIFR(max) (R-D(75%)). The mean DIFR(max) values for type IIB EDL and type IIB SM fibers were not statistically different, and both were greater than the mean DIFR(max) for type I Sol fibers. The mean R-D(75%) for type IIB EDL fibers was greater than that for type I Sol fibers as well as type IIB SM fibers. These data suggest that E-C coupling characteristics of mechanically skinned rat single muscle fibers are related to MHC-based fiber type and the muscle of origin.
منابع مشابه
Troponin C isoform composition determines differences in Sr(2+)-activation characteristics between rat diaphragm fibers.
Single fibers of rat diaphragm containing different naturally occurring combinations of myofibrillar protein isoforms were used to evaluate the contribution of troponin C (TnC) isoforms to fiber type-related differences with respect to sensitivity to Sr(2+) of the contractile system. Mechanically skinned fibers were studied for their isometric force vs. Sr(2+) concentration ([Sr(2+)]) relations...
متن کاملMHC isoform composition and Ca(2+)- or Sr(2+)-activation properties of rat skeletal muscle fibers.
Chemically skinned single fibers from adult rat skeletal muscles were used to test the hypothesis that, in mammalian muscle fibers, myosin heavy chain (MHC) isoform expression and Ca(2+)- or Sr(2+)-activation characteristics are only partly correlated. The fibers were first activated in Ca(2+)- or Sr(2+)-buffered solutions under near-physiological conditions, and then their MHC isoform composit...
متن کاملEffect of lactate on depolarization-induced Ca21 release in mechanically skinned skeletal muscle fibers
Dutka, T. L., and G. D. Lamb. Effect of lactate on depolarization-induced Ca21 release in mechanically skinned skeletal muscle fibers. Am. J. Physiol. Cell Physiol. 278: C517–C525, 2000.—It is unclear whether accumulation of lactate in skeletal muscle fibers during intense activity contributes to muscle fatigue. Using mechanically skinned fibers from rat and toad muscle, we were able to examine...
متن کاملفعالیت فیبرهای گاما در وضعیت استراحت و هنگام کشش های فازیک و تونیک در دوک عضلانی دم Rat
Background and Purpose: Basically, The muscle spindle is innervated by γ – fibers, γ – fibers are divided into phasic and tonic groups on the basis of their function. Ït is believed that phasic one γ innervate all the muscle spindle fibers where as tonic one innervate only tonic muscle spindle fibers and phasic of type two. The purpose of this study was to observe the fiber activity during ph...
متن کاملEffect of lactate on depolarization-induced Ca(2+) release in mechanically skinned skeletal muscle fibers.
It is unclear whether accumulation of lactate in skeletal muscle fibers during intense activity contributes to muscle fatigue. Using mechanically skinned fibers from rat and toad muscle, we were able to examine the effect of L(+)-lactate on excitation-contraction coupling independently of other metabolic changes. We investigated the effects of lactate on the contractile apparatus, caffeine-indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 284 6 شماره
صفحات -
تاریخ انتشار 2003